Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 356: 141883, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38583528

RESUMO

Comammox Nitrospira and canonical ammonia-oxidizing bacteria (cAOB) generally coexist in activated sludge. In present study, the effect of comammox Nitrospira on N2O production during nitrification of activated sludge was investigated. Comammox Nitrospira and cAOB were separately enriched in two nitrifying reactors, with respective relative abundance of approximately 98% in ammonia oxidizer community. The N2O emission factor (EF) of nitrification in comammox Nitrospira dominated reactor was 0.35%, consistently lower than that (2.2%) in cAOB dominated reactor. When increasing the relative abundance of comammox Nitrospira in ammonia oxidizer community, the N2O EF of nitrification decreased exponentially, which suggested that comammox Nitrospira not only decreased N2O production directly but also might have reduced N2O yield by cAOB. When cAOB dominated the ammonia oxidizer community of sludge, decreasing pH to 6.3, lowering DO to less than 0.5 mg/L, and increasing nitrite concentration enhanced N2O EF dramatically. When comammox Nitrospira became the dominant ammonia oxidizer, however, the N2O EF correlated to nitrite insignificantly and a low DO of 0.2 mg/L and weakly acidic pH (6.3) decreased N2O EF by approximately 70% and 60%, respectively. These results imply that enhancing the relative abundance of comammox Nitrospira in sludge is an effective way to reducing N2O emissions and can also offset the promoting effects of acidic pH, low DO, and high nitrite concentration on N2O production during nitrification.


Assuntos
Amônia , Bactérias , Nitrificação , Oxirredução , Esgotos , Amônia/metabolismo , Esgotos/microbiologia , Bactérias/metabolismo , Óxido Nitroso/metabolismo , Nitritos/metabolismo , Reatores Biológicos/microbiologia , Eliminação de Resíduos Líquidos/métodos
2.
Water Res ; 255: 121491, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38520779

RESUMO

Pre-capturing organics in municipal wastewater for biogas production, combined with Anammox-based nitrogen removal process, improves the sustainability of sewage treatment. Thus, enhancing nitrogen removal via Anammox in mainstream wastewater treatment becomes very crucial. In present study, a three-stage anoxic/oxic (AO) biofilm process with intermittent aeration was designed to strengthen partial nitrification/denitrification coupling Anammox (PNA/PDA) in treatment of low C/N wastewater, which contained chemical oxygen demand (COD) of 79.8 mg/L and total inorganic nitrogen (TIN) of 58.9 mg/L. With a hydraulic retention time of 8.0 h, the process successfully reduced TIN to 10.6 mg/L, achieving a nitrogen removal efficiency of 83.3 %. The 1st anoxic zone accounted for 32.0 % TIN removal, with 10.3 % by denitrification and 21.7 % by PDA, meanwhile, the 2nd and 3rd anoxic zones contributed 19.4 % and 4.5 % of TIN removal, primarily achieved through PDA (including endogenous PD coupling Anammox). The 1st and 2nd intermittent zones accounted for 27.2 % and 17.0 % of TIN removal, respectively, with 13.7 %-21.3 % by PNA and 3.2 %-5.3 % by PDA. Although this process did not pursue nitrite accumulation in any zone (< 1.5 mg-N/L), PNA and PDA accounted for 35.1 % and 52.1 % of TIN removal, respectively. Only 0.21 % of removed TIN was released as nitrous oxide. The AnAOB of Candidatus Brocadia was enriched in each zone, with a relative abundance of 0.66 %-2.29 %. In intermittent zones, NOB had been partially suppressed (AOB/NOB = 0.73-0.88), mainly due to intermittent aeration and effective nitrite utilization by AnAOB since its population size was much greater than NOB. Present study indicated that the three-stage AO biofilm process with intermittent aeration could enhance nitrogen removal via PNA and PDA with a low N2O emission factor.

3.
Biochem Pharmacol ; 213: 115587, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37187275

RESUMO

Individuals have known that Janus kinase (JAK) signal transducer and activator of transcription (STAT) signaling pathway was involved in the growth of the cell, cell differentiation courses advancement, immune cellular survival, as well as hematopoietic system advancement. Researches in the animal models have already uncovered a JAK/STAT regulatory function in myocardial ischemia-reperfusion injury (MIRI), acute myocardial infarction (MI), hypertension, myocarditis, heart failure, angiogenesis and fibrosis. Evidences originating in these studies indicate a therapeutic JAK/STAT function in cardiovascular diseases (CVDs). In this retrospection, various JAK/STAT functions in the normal and ill hearts were described. Moreover, the latest figures about JAK/STAT were summarized under the background of CVDs. Finally, we discussed the clinical transformation prospects and technical limitations of JAK/STAT as the potential therapeutic targets for CVDs. This collection of evidences has essential meanings for the clinical application of JAK/STAT as medicinal agents for CVDs. In this retrospection, various JAK/STAT functions in the normal and ill hearts were described. Moreover, the latest figures about JAK/STAT were summarized under the background of CVDs. Finally, we discussed the clinical transformation prospects and toxicity of JAK/STAT inhibitors as potential therapeutic targets for CVDs. This collection of evidences has essential meanings for the clinical application of JAK/STAT as medicinal agents for CVDs.


Assuntos
Doenças Cardiovasculares , Infarto do Miocárdio , Animais , Janus Quinases/metabolismo , Doenças Cardiovasculares/tratamento farmacológico , Transdução de Sinais/fisiologia , Infarto do Miocárdio/metabolismo , Coração
4.
Sci Total Environ ; 889: 164090, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37207779

RESUMO

The hydraulic resistance of biofilm layer on membranes impacts the filtration resistance significantly. The effect of predation by two model microfauna (i.e., paramecia and rotifers) on the hydraulic resistance, structure, extracellular polymeric substance (EPS), and bacterial community of biofilms developed on supporting materials (i.e., nylon mesh) was evaluated in this study. Long-term experiments demonstrated that predation could alter biofilm compositions and accelerated the decline of hydraulic resistance by increasing biofilm heterogeneity and deformation. Importantly, predation preference of paramecia and rotifers on biofilm components were further investigated for the first time by tracking the fluorescence change in the predator bodies after exposure to the stained biofilms. Results indicated that after 12-hour's incubation, the ratio of extracellular α-polysaccharides (α-PS) to proteins (PN) within the bodies of paramecia and rotifers increased to 2.6 and 3.9, respectively, which was 0.76 in the original biofilms. The ratios of α-PS/live cells within paramecia and rotifers increased to 1.42 and 1.64 from 0.81 in the original biofilms. The ratio of live/dead cells in the predator bodies, however, changed slightly compared to the original biofilms. These results clearly and directly evidenced that both paramecia and rotifers could feed on biofilm EPS and cells, but having a significant preference for PS over PN and cells. Since extracellular PS is recognized as a primary biofilm adhesion agent, the preference for PS could better explain why predation had accelerated the disintegration and hydraulic resistance decline of mesh biofilms.


Assuntos
Matriz Extracelular de Substâncias Poliméricas , Comportamento Predatório , Animais , Membranas Artificiais , Biofilmes , Polissacarídeos , Proteínas
5.
Int J Mol Sci ; 24(6)2023 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-36983022

RESUMO

The chronic wound represents a serious disease characterized by a failure to heal damaged skin and surrounding soft tissue. Mesenchymal stem cells (MSCs) derived from adipose tissue (ADSCs) are a promising therapeutic strategy, but their heterogeneity may result in varying or insufficient therapeutic capabilities. In this study, we discovered that all ADSCs populations expressed platelet-derived growth factor receptor ß (PDGFR-ß), while the expression level decreased dynamically with passages. Thus, using a CRISPRa-based system, we endogenously overexpressed PDGFR-ß in ADSCs. Moreover, a series of in vivo and in vitro experiments were conducted to determine the functional changes in PDGFR-ß activation ADSCs (AC-ADSCs) and to investigate the underlying mechanisms. With the activation of PDGFR-ß, AC-ADSCs exhibited enhanced migration, survival, and paracrine capacity relative to control ADSCs (CON-ADSCs). In addition, the secretion components of AC-ADSCs contained more pro-angiogenic factors and extracellular matrix-associated molecules, which promoted the function of endothelial cells (ECs) in vitro. Additionally, in in vivo transplantation experiments, the AC-ADSCs transplantation group demonstrated improved wound healing rates, stronger collagen deposition, and angiogenesis. Consequently, our findings revealed that PDGFR-ß overexpression enhanced the migration, survival, and paracrine capacity of ADSCs and improved therapeutic effects after transplantation to diabetic mice.


Assuntos
Diabetes Mellitus Experimental , Células-Tronco Mesenquimais , Camundongos , Animais , Células Endoteliais , Diabetes Mellitus Experimental/terapia , Diabetes Mellitus Experimental/metabolismo , Cicatrização , Células-Tronco Mesenquimais/metabolismo , Matriz Extracelular , Tecido Adiposo
6.
Appl Environ Microbiol ; 89(3): e0004723, 2023 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-36912626

RESUMO

Exploring nitrifiers in extreme environments is vital to expanding our understanding of nitrogen cycle and microbial diversity. This study presents that complete ammonia oxidation (comammox) Nitrospira, together with acidophilic ammonia-oxidizing archaea (AOA), dominate in the nitrifying guild in sediments of an acid mine lake (AML). The lake water was characterized by acidic pH below 5 with a high ammonium concentration of 175 mg-N/liter, which is rare on the earth. Nitrification was active in sediments with a maximum nitrate production potential of 70.5 µg-N/(g-dry weight [dw] day) for mixed sediments. Quantitative PCR assays determined that in AML sediments, comammox Nitrospira and AOA amoA genes had relative abundances of 52% and 41%, respectively, among the total amoA genes. Further assays with 16S rRNA and amoA gene amplicon sequencing and metagenomics confirmed their dominance and revealed that the comammox Nitrospira found in sediments belonged to comammox Nitrospira clade A.2. Metagenomic binning retrieved a metagenome-assembled genome (MAG) of the comammox Nitrospira from sediments (completeness = 96.76%), and phylogenomic analysis suggested that it was a novel comammox Nitrospira. Comparative genomic investigation revealed that this comammox Nitrospira contained diverse metal resistance genes and an acidophile-affiliated F-type ATPase. Moreover, it had a more diverse genomic characteristic on nitrogen metabolism than the AOA in sediments and canonical AOB did. The results suggest that comammox Nitrospira is a versatile nitrifier that can adapt to acidic environments even with high ammonium concentrations. IMPORTANCE Ammonia-oxidizing archaea (AOA) was previously considered the sole dominant ammonia oxidizer in acidic environments. This study, however, found that complete ammonia oxidation (comammox) Nitrospira was also a dominant ammonia oxidizer in the sediments of an acidic mine lake, which had an acidic pH < 5 and a high ammonium concentration of 175 mg-N/liter. In combination with average nucleotide identity analysis, phylogenomic analysis suggested it is a novel strain of comammox Nitrospira. Moreover, the adaption of comammox Nitrospira to the acidic lake had been comprehensively investigated based on genome-centric metagenomic approaches. The outcomes of this study significantly expand our understanding of the diversity and adaptability of ammonia oxidizers in the acidic environments.


Assuntos
Compostos de Amônio , Leucemia Mieloide Aguda , Humanos , Archaea/metabolismo , Amônia/metabolismo , Compostos de Amônio/metabolismo , Lagos , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo , Oxirredução , Bactérias , Nitrificação , Filogenia
7.
J Cardiovasc Transl Res ; 16(5): 1032-1049, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-36947365

RESUMO

Angiogenesis occurred after myocardial infarction (MI) protects heart failure (HF). The aim of our study was to explore function of histone methyltransferase KMT2D (MLL4, mixed-lineage leukemia 4) in angiogenesis post-MI. Western blotting showed that KMT2D protein expression was elevated in MI mouse myocardial. Cardiomyocyte-specific Kmt2d-knockout (Kmt2d-cKO) mice were generated, and echocardiography and immunofluorescence staining detected significantly attenuated cardiac function and insufficient angiogenesis following MI in Kmt2d-cKO mice. Cross-talk assay suggested that Kmt2d-KO H9c2-derived conditioned medium attenuates EA.hy926 EC function. ELISA further identified that VEGF-A released from Kmt2d-KO H9c2 was significantly reduced. CUT&Tag and RT-qPCR revealed that KMT2D deficiency reduced Vegf-a mRNA expression and enrichment of H3K4me1 on the Vegf-a promoter. Moreover, KMT2D silencing in ECs also suppressed endothelial function. Our study indicates that KMT2D depletion in both cardiomyocytes and ECs attenuates angiogenesis and that loss of KMT2D exacerbates heart failure after MI in mice.


Assuntos
Insuficiência Cardíaca , Infarto do Miocárdio , Animais , Camundongos , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/metabolismo , Histona Metiltransferases/genética , Histona Metiltransferases/metabolismo , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Camundongos Knockout , Miócitos Cardíacos/metabolismo , Ativação Transcricional , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
8.
Int J Ment Health Addict ; : 1-11, 2021 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-34658681

RESUMO

We noticed an unusual increase of aged adults in first-episode schizophrenia in January and February 2020 since the outbreak of COVID-19. This retrospective study aims to statistically validate this observation and find potential risk factors, if applicable. The demographics of schizophrenia in outpatients (both first-episode and follow-up) from January to March 2020 (36,624 records) and similar periods of 2017-2019 (114,141 records) were analyzed and compared to minimize seasonal influence. Limited personal information (age, gender, approximate residence) was investigated to find risk factors. After considering seasonal factors such as the Spring festival, the age of the first-episode schizophrenia was significantly increased in January (46.60 ± 15.14) and February (51.53 ± 14.74) but went back to normal in March 2020 (38.89 ± 14.59), compared with similar periods from 2017 to 2019 (Jan., 40.77 ± 15.26; Feb., 39.69 ± 15.10; Mar., 42.04 ± 15.83). Meanwhile, a slight but not significant change was found in the distribution of gender and approximate residence (urban/suburb). Our data supported that risk of first-episode schizophrenia in aged adults increased during the COVID-19 outbreak, which is consistent with the fact that COVID-19 is more lethal to elders. Public healthcare should prepare in advance for potential risks in public mental health, especially for elders.

9.
Appl Environ Microbiol ; 87(11)2021 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-33975896

RESUMO

Nitrification is an essential process for nutrient removal from wastewater and an important emission source of nitrous oxide (N2O), which is a powerful greenhouse gas and a dominant ozone-depleting substance. In this study, nitrification and N2O emissions were tested in two weakly acidic (pH 6.3 to 6.8) reactors: one with dissolved oxygen (DO) at over 2.0 mg/liter and the other with DO at approximately 0.5 mg/liter. Efficient nitrification was achieved in both reactors. Compared to that in the high-DO reactor, N2O emission in the low-DO reactor decreased slightly, by 20%, and had insignificant correlation with the fluctuations of DO (P = 0.935) and nitrite (P = 0.713), indicating that N2O might not be produced mainly via nitrifier denitrification. Based on quantitative PCR (qPCR), quantitative fluorescent in situ hybridization (qFISH), and functional gene amplicon and metagenome sequencing, it was found that complete ammonia oxidizers (comammox), i.e., Nitrospira organisms, significantly outnumbered canonical ammonia-oxidizing bacteria (AOB) in both weakly acidic reactors, especially in the low-DO reactor with the comammox/AOB amoA gene ratio increasing from 6.6 to 17.1. Therefore, it was speculated that the enriched comammox was the primary cause for the slightly decreased N2O emission under long-term low DO in the weakly acidic reactor. This study demonstrated that the comammox Nitrospira can survive well under the weakly acidic and low-DO conditions, implying that achieving efficient nitrification with low N2O emission as well as low energy and alkalinity consumption is feasible for wastewater treatment.IMPORTANCE Nitrification in wastewater treatment is an important process for eutrophication control and an emission source for the greenhouse gas N2O. The nitrifying process is usually operated at a slightly alkaline pH and high DO (>2 mg/liter) to ensure efficient nitrification. However, it consumes a large amount of energy and chemicals, especially for wastewater without sufficient alkalinity. This paper demonstrates that comammox can adapt well to the weakly acidic and low-DO bioreactors, with a result of efficient nitrification and low N2O emission. These findings indicate that comammox organisms are significant for sustainable wastewater treatment, which provides an opportunity to achieve efficient nitrification with low N2O production as well as low energy and chemical consumption simultaneously.


Assuntos
Amônia/metabolismo , Bactérias/metabolismo , Reatores Biológicos/microbiologia , Nitrificação , Óxido Nitroso/metabolismo , Oxigênio/análise , Águas Residuárias/microbiologia , Concentração de Íons de Hidrogênio , Oxirredução
10.
Environ Sci Technol ; 55(10): 6975-6983, 2021 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-33904707

RESUMO

Nitrous oxide (N2O) is an important greenhouse gas and a dominant ozone-depleting substance. Nitrification in the activated sludge process (ASP) is an important N2O emission source. This study demonstrated that a short-term low dissolved oxygen (DO) increased the N2O emissions by six times, while long-term low DO operation decreased the N2O emissions by 54% (P < 0.01). Under long-term low DO, the ammonia oxidizer abundance in the ASP increased significantly, and thus, complete nitrification was recovered and no NH3 or nitrite accumulated. Moreover, long-term low DO decreased the abundance of ammonia-oxidizing bacteria (AOB) by 28%, while increased the abundance of ammonia-oxidizing archaea (AOA) by 507%, mainly due to their higher oxygen affinity. As a result, AOA outnumbered AOB with the AOA/AOB amoA gene ratio increasing to 19.5 under long-term low DO. The efficient nitrification and decreased AOB abundance might not increase N2O production via AOB under long-term low DO conditions. The enriched AOA could decrease the N2O emissions because they were reported to lack canonical nitric oxide (NO) reductase genes that convert NO to N2O. Probably because of AOA enrichment, the positive and significant (P = 0.02) correlation of N2O emission and nitrite concentration became insignificant (P = 0.332) after 80 days of low DO operation. Therefore, ASPs can be operated with low DO and extended sludge age to synchronously reduce N2O production and carbon dioxide emissions owing to lower aeration energy without compromising the nitrification efficiency.


Assuntos
Oxigênio , Esgotos , Amônia , Archaea/genética , Bactérias , Nitrificação , Óxido Nitroso/análise , Oxirredução , Oxigênio/análise , Microbiologia do Solo
11.
Sci China Chem ; 63(8): 1121-1133, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33163014

RESUMO

Major light-harvesting complex of photosystem II (LHCII) plays a dual role in light-harvesting and excited energy dissipation to protect photodamage from excess energy. The regulatory switch is induced by increased acidity, temperature or both. However, the molecular origin of the protein dynamics at the atomic level is still unknown. We carried out temperature-jump time-resolved infrared spectroscopy and molecular dynamics simulations to determine the energy quenching dynamics and conformational changes of LHCII trimers. We found that the spontaneous formation of a pair of local α-helices from the 310-helix E/loop and the C-terminal coil of the neighboring monomer, in response to the increased environmental temperature and/or acidity, induces a scissoring motion of transmembrane helices A and B, shifting the conformational equilibrium to a more open state, with an increased angle between the associated carotenoids. The dynamical allosteric conformation change leads to close contacts between the first excited state of carotenoid lutein 1 and chlorophyll pigments, facilitating the fluorescence quenching. Based on these results, we suggest a unified mechanism by which the LHCII trimer controls the dissipation of excess excited energy in response to increased temperature and acidity, as an intrinsic result of intense sun light in plant photosynthesis.

12.
Chemosphere ; 252: 126378, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32199161

RESUMO

Biofilm based systems and the hybrid between activated sludge and biofilms have been popularly applied for wastewater treatment. Unlike the suspended biomass, the biofilm concentration and kinetics on the media cannot be easily measured. In this study, a novel and easy-to-use approach has been developed based on pulse-flow respirometer to characterize the biofilm stoichiometry and kinetics in situ. With the new designed breathing reactor, the mutual interference between the magnetic stirring and biofilm media that happened in the conventional breathing reactor was solved. Moreover, Microsoft Excel based programs had been developed to fit the oxygen uptake rate curves with dynamic nonlinear regression. With this new approach, the yield coefficient, maximum oxidation capacity, and half-saturation constant of substrate for the heterotrophic biofilms in a fix bed reactor were determined to be 0.46 g-VSS/g-COD, 67.0 mg-COD/(h·L-media), and 4.4 mg-COD/L, respectively. Those parameters for biofilm ammonia oxidizers from a moving bed biofilm reactor were determined to be 0.17 g-VSS/g-N, 18.6 mg-N/(h·L-media), and 1.2 mg-N/L, respectively, and they were 0.11 g-VSS/g-N, 20.9 mg-N/(h·L-media), and 0.98 mg-N/L for nitrite oxidizers in the same biofilms. This study also found that the maximum specific substrate utilization rate for detached biofilms increased by 3.2 times, indicating that maintaining biofilm integrity was very important in the kinetic tests. Using this approach, the biofilm kinetics on the media can be regularly measured for treatment optimization.


Assuntos
Biofilmes , Reatores Biológicos , Eliminação de Resíduos Líquidos/métodos , Biomassa , Processos Heterotróficos , Cinética , Esgotos/química , Águas Residuárias
13.
Sci Rep ; 9(1): 11368, 2019 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-31388061

RESUMO

We estimated ruminal crude protein degradation of twelve feedstuffs commonly used in China using in vitro and in vivo methods. The in vivo net protein utilization (NPU) levels of corn, sorghum, barley, wheat, Chinese wild rye grass, corn stalk, rice straw, soybean straw, soybean meal, distillers' dried grains with solubles (DDGS), Brewers' spent grains, and sunflower meal were 52.57, 49.68, 65.38, 72.58, 82.41, 72.26, 68.57, 76.95, 54.75, 56.27, 29.03 and 41.88%, respectively. The linear regression between NH3-N incorporated into microbial proteins and gas production after incubation (6, 12, and 24 h) was significant (r = 0.9948 and P < 0.001, r = 0.9874 and P < 0.01, and r = 0.9912 and P < 0.01, respectively). Based on the linear regression equations, we estimated in vitro protein degradability (IVPD) and generated the regression equations between IVPD and NPU. The linear regression equations between IVPD and NPU after 6 h incubation in the energy, protein, and roughage feed groups were Y = 0.5633X + 33.20 (R2 = 0.8517, P < 0.05), Y = 0.8482X+ 34.81 (R2 = 0.8650, P < 0.05), and Y = 1.6295X - 17.70 (R2 = 0.909, P < 0.05), respectively. The in vitro gas production method is useful for the determination of protein degradation in feedstuffs.


Assuntos
Ração Animal , Grão Comestível , Proteólise , Rúmen/metabolismo , Animais , Bovinos , Digestão , Hordeum , Rúmen/microbiologia , Rúmen/fisiologia , Sorghum , Glycine max , Triticum , Zea mays
14.
PLoS One ; 11(4): e0153584, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27082647

RESUMO

The objective of this study was to evaluate the effects of supplementation of phytoecdysteroids (PEDS) extracted from Cyanotis arachnoidea on rumen fermentation, enzymes activity and microbial efficiency in a dual flow continuous-culture system. A single-factor experimental design was used with twelve fermenters in 4 groups with 3 replicates each. Fermenters were incubated for a total of 7 days that included first 4 days for adaptation and last 3 days for sampling. PEDS was added at levels of zero (as control), 5, 10, and 15 mg/g of the substrate (DM). The results showed that increasing supplementation levels of PEDS resulted in incremental digestibility of dry matter (DMD) (quadratic, P = 0.001) and organic matter (OMD) (quadratic, P = 0.031), but unchanged digestibility of neutral detergent fiber (NDFD), crude protein (CPD) and acid detergent acid (ADFD). As supplementation levels of PEDS increased, there were decreased response in the concentration of ammonia nitrogen (NH3-N) (linear, P = 0.015) and increased response in molar proportions of butyrate (linear, P = 0.004), but unchanged response in total volatile fatty acid (TVFA) and the molar proportion of acetate and propionate, respectively. Increasing PEDS supplementation levels decreased the ratio of acetate to propionate (linear, P = 0.038), suggesting an alteration of rumen fermentation pattern occurring due to PEDS supplementation in the diet. Supplementation of PEDS significantly increased activities of glutamate dehydrogenase (quadratic, P = 0.001), alanine dehydrogenase (quadratic, P = 0.004), glutamate synthase (linear, P = 0.038), glutamine synthetase (quadratic, P = 0.011), respectively. There were no discernible differences in the activity of carboxymethyl cellulose (CMCase), xylanase and protease regardless of the treatments. The daily production of microbial nitrogen (linear, P = 0.002) and microbial efficiency (MOEEF) (linear, P = 0.001) increased linearly as supplementation levels of PEDS increased. The decreased response of fluid NH3-N and the increased response of MN indicated that PEDS positively increased the synthesis of microbial proteins.


Assuntos
Bactérias/metabolismo , Commelinaceae/química , Técnicas de Cultura/métodos , Ecdisteroides/farmacologia , Enzimas/metabolismo , Fermentação/efeitos dos fármacos , Rúmen/metabolismo , Ração Animal , Fenômenos Fisiológicos da Nutrição Animal/efeitos dos fármacos , Animais , Bactérias/citologia , Bactérias/efeitos dos fármacos , Reatores Biológicos/microbiologia , Bovinos , Ecdisteroides/isolamento & purificação , Microbioma Gastrointestinal/efeitos dos fármacos , Microbioma Gastrointestinal/fisiologia , Fitosteróis/isolamento & purificação , Fitosteróis/farmacologia , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Rúmen/efeitos dos fármacos , Rúmen/microbiologia
15.
Rev Sci Instrum ; 86(5): 053105, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-26026512

RESUMO

Knowledge of dynamical structure of protein is an important clue to understand its biological function in vivo. Temperature-jump (T-jump) time-resolved transient mid-IR absorbance spectroscopy is a powerful tool in elucidating the protein dynamical structures and the folding/unfolding kinetics of proteins in solution. A home-built setup of T-jump time-resolved transient mid-IR absorbance spectroscopy with high sensitivity is developed, which is composed of a Q-switched Cr, Tm, Ho:YAG laser with an output wavelength at 2.09 µm as the T-jump heating source, and a continuous working CO laser tunable from 1580 to 1980 cm(-1) as the IR probe. The results demonstrate that this system has a sensitivity of 1 × 10(-4) ΔOD for a single wavelength detection, and 2 × 10(-4) ΔOD for spectral detection in amide I' region, as well as a temporal resolution of 20 ns. Moreover, the data quality coming from the CO laser is comparable to the one using the commercial quantum cascade laser.


Assuntos
Lasers de Estado Sólido , Espectrofotometria Infravermelho/instrumentação , Espectrofotometria Infravermelho/métodos , Animais , Citocromos c/química , Desenho de Equipamento , Coração , Cavalos , Cinética , Cloreto de Potássio/química , Fatores de Tempo
16.
Sci Rep ; 4: 4834, 2014 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-24776652

RESUMO

The Escherichia coli DegP has been reported to function both as molecular chaperone and protease for the quality control of outer membrane protein biogenesis. Activation of the inactive DegP hexamers was believed to occur via their disassembly into trimeric units and subsequent reassembly into larger oligomers (12-mers and 24-mers). Here, we analyzed the thermal stability and the unfolding dynamics of the different secondary structure components of the DegP hexamers using Fourier transform infrared spectroscopy and temperature-jump nanosecond time-resolved IR difference absorbance spectroscopy. We found that the interfacial secondary structure components possess a degreed thermal stability, with the disassembly of the DegP hexamers follows a "proteinquake" manner, such that the fully exposed parts of the interfacial ß-sheets serving as the temperature sensor and epicenter to drive the sequential unfolding/disassembly process that finishes within about 134 ns at room temperature.


Assuntos
Proteínas de Choque Térmico/química , Proteínas de Choque Térmico/metabolismo , Proteínas Periplásmicas/química , Proteínas Periplásmicas/metabolismo , Multimerização Proteica , Serina Endopeptidases/química , Serina Endopeptidases/metabolismo , Temperatura , Ativação Enzimática , Modelos Moleculares , Conformação Proteica , Estabilidade Proteica , Desdobramento de Proteína , Espectroscopia de Infravermelho com Transformada de Fourier , Termodinâmica
17.
Acta Crystallogr Sect E Struct Rep Online ; 67(Pt 5): o1191, 2011 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-21754493

RESUMO

In the title compound, C(10)H(6)N(4)O(4), the pyridine rings are oriented at a dihedral angle of 67.8 (1)°. The O-atom pairs are trans, each displaced by a similar distance [average = 0.2331 (2) Å] out of the attached pyridine ring plane. In the crystal, inter-molecular C-H⋯O and C-H⋯N inter-actions link the mol-ecules into a three-dimensional network.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA